
P1: GCQ/GDP/GIR/GMF P2: GDW

International Journal of Theoretical Physics [ijtp] PP159-339821 January 1, 1904 2:39 Style file version Nov. 19th, 1999

International Journal of Theoretical Physics, Vol. 40, No. 8, 2001
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We show how the conserved vectors and associated (approximate) Lie symmetry gener-
ators of a partial differential equation with a small parameter can be utilized to construct
approximate Lagrangians for the equation. We then use the Lagrangian to further deter-
mine approximate Noether symmetries and, hence, new associated conservation laws.
The theory is applied to a number of perturbations of the wave equation.

1. INTRODUCTION

It has been shown by Feroze and Kara (in press) that the procedure to construct
Lagrangians for differential equations, using approximate symmetries and asso-
ciated conservation laws along with Noether’s theorem (see Noether, 1918), can
be extended to ordinary differential equations with a small parameter (sometimes
referred to as perturbed equations). Consequently, the symmetry and conserved
quantity (first integral) used is a Noether approximate symmetry and first inte-
gral in the sense that the symmetry leaves invariant the functional that arises
in the variational problem and the associated first integral satisfies Noether’s
theorem.

In the sequel, we extend the procedure to perturbed partial differential equa-
tions (p.d.e.). That is, approximate Lie symmetry generators and conserved vectors
of a p.d.e. are used to determine Lagrangians for the equation (if these exist). As the
Lagrangian is an approximate one, we maintain the order of the small parameter
as it appears in the p.d.e.— in the examples here, the equations are first order in
the small parameter.
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We now review some pertinent results. In Baikovet al. (1996), it is shown that
if X0 is a generator of Lie–B¨acklund symmetry of a partial differential equation

Eβ

0 = 0 β = 1, . . . , m̃, (1.1)

then anapproximate Lie-B̈acklund symmetry, X = X0+ εX1, of the perturbed
partial differential equation

Eβ

0 + εEβ

1 = 0 (1.2)

is obtained by solving forX1 in

X1
(
Eβ

0

)∣∣
Eβ

0=0+ H = 0, (1.3)

where

H = 1

ε
X0
(
Eβ

0 + εEβ

1

)∣∣
Eβ

0+εEβ

1=0 (1.4)

Eβ

1 is the perturbation andH is referred to as an auxilliary function. Further, an
approximate conserved vectorT = (T1, T2) of (1.2) satisfies

Di T
i |(1.2) = O(ε2) (1.5)

where

Ti = Ti
0 + εTi

1 , i = 1, 2. (1.6)

Equation (1.5) is an approximate conservation law for (1.2). Furthermore, the
componentsTi = Ti

0 + εTi
1 of the approximate conserved vector,T , satisfies

X0Ti
0 + Dj

(
ξ

j
0

)
Ti

0 − T j
0 Dj

(
ξ i

0

) = 0,

X0
(
Ti

1

)+ Dj
(
ξ

j
0

)
Ti

1 − T j
1 Dj

(
ξ i

0

) = −(X1
(
Ti

0

)+ Dj
(
ξ

j
1

)
Ti

0 − T j
0 Dj

(
ξ i

1

))
,

i = 1, 2. (1.7)

For the Lagrangian formulation, more specifically for the inverse problem, we
appeal to Noether’s theorem. However, we first need to state the following theorem
regarding the invariance of the functional in the variational problem. The proof
is straightforward and proceeds in a way similar to the well known unperturbed
case.

Theorem 1. Suppose L(t, x, u, ut , ux, ε) = L0(t, x, u, ut , ux)+ εL1(t, x, u,
ut , ux) is a first-order Lagrangian corresponding to a second-order perturbed
partial differential equation (1.2). If the functional

∫
Ä

L dt dx is invariant under
the one-parameter group of transformations with approximate Lie–Bäcklund sym-
metry generator X= X0+ εX1, where X0 = ξ1

0 ∂/∂t + ξ2
0 ∂/∂x + η0 ∂/∂u and
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X1 = ξ1
1 ∂/∂t + ξ2

1 ∂/∂x + η1 ∂/∂u upto gauge Bi = Bi
0+ εBi

1, Bi ∈A , i = 1, 2
then

X0L0+ L0Dj
(
ξ

j
0

) = Dj
(
B j

0

)
,

X1L0+ X0L1+ L0Dj ξ
j

1 + L1Dj ξ
j

0 = Dj B
j
1 , (1.8)

where Di is the total differential operator with respect to xi , i.e.,

Di = ∂

∂xi
+ uαi

∂

∂uα
+ uαi j

∂

∂uαj
+ · · · , i = 1, 2.

In this notation, Noether’s theorem reads

Theorem 2. Corresponding to each symmetry X= ξ i ∂/∂xi + ηα ∂/∂uα that
satisfies the conditions of Theorem 1, there exists an approximate conserved vector
T = (T1, T2) given by

Ti = −Bi + Lξ i + (ηα − ξ j uαj
) ∂L

∂uαi
+ O(ε2) (1.9)

such that Eq. (1.5) is satisfied.

Note. With Ti = Ti
0 + εTi

1 , i = 1, 2, if we separate by powers ofε, orderε yields

T1
1 = −B1

1 + L0ξ
1
1 + L1ξ

1
0 +

(
η1− utξ

1
1 − uxξ

2
1

) ∂L0

∂ut

+ (η0− utξ
1
0 − uxξ

2
0

) ∂L1

∂ut

T2
1 = −B2

1 + L0ξ
2
1 + L1ξ

2
0 +

(
η1− utξ

1
1 − uxξ

2
1

) ∂L0

∂ux

+ (η0− utξ
1
0 − uxξ

2
0

) ∂L1

∂ux
(1.10)

2. APPLICATIONS

2.1.We consider the following perturbation of the 1–1 wave equation considered
by Karaet al. (1999),

utt − uxx + ε
(

uut + 1

2
tu2

t −
1

2
tu2

x

)
= 0. (2.1)

An approximate Lie point symmetryX = X0+ εX1 = ∂/∂u+ ε(− 1
2tu ∂/∂u).
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X is associated with the conserved vector

(T1, T2) = (T1
0 + εT1

1 , T2
0 + εT2

1

)
=
(

ut + ε
[

1

4
u2+ 1

2
tuut

]
,−ux + ε

[
−1

2
tuux

])
. (2.2)

A Lagrangian corresponding toX0 and (T1
0 , T2

0 ) is L0 = 1
2u2

t − 1
2u2

x (see
Ibragimov, 1994). We use (1.10) to constructL1, i.e., we get the system

∂L1

∂ut
= 1

4
u2+ tuut + B1

1,
∂L1

∂ux
= −tuux + B2

1. (2.3)

From the first equation in (2.3), we get

L1 = 1

4
u2ut + 1

2
tuu2

t +
∫

B1
1 dut + A(t, x, u, ux)

and with a choice ofB1
1 = − 1

4u2, L1 = 1
2tuu2

t + A. From the second equation in
(2.3) andB2

1 = 0, it can be shown thatA = 1
2tuu2

x so thatL1 = 1
2tuu2

t − 1
2tuu2

x
so that an approximate Lagrangian for Eq. (2.1) is

L = 1

2
u2

t −
1

2
u2

x + ε
(

1

2
tuu2

t −
1

2
tuu2

x

)
=
(

1

2
u2

t −
1

2
u2

x

)
(1+ εtu). (2.4)

In fact, L is equivalent to theexactLagrangianL∗ = 1
2 eεtu(u2

t − u2
x). The Euler–

Lagrange operator onL is

utt − uxx + ε
(

uut + 1

2
tu2

t −
1

2
tu2

x

)
+ εtu(utt − uxx). (2.5)

Remark. As the third term in (2.5) is of orderε2, L is an approximate Lagrangian
of (2.1) with approximate Noether symmetryX (asL is constructed from an ap-
proximate version of Noether’s theorem), i.e.,X approximately yields the corre-
sponding variational functional invariant. Also, the vector (T1, T2) is an approxi-
mate Noether conserved vector.

We now study the possible existence of other approximate Noether
symmetries and conserved vectors corresponding toL using (1.8) and (1.9),
respectively.

2.1.1.Firstly, asY0 = ∂/∂t is also a Noether symmetry associated withL0, we use
the second equation in (1.8) to determineY1 (L1 as obtained earlier), i.e.,

∂

∂t

(
1

2
tuu2

t −
1

2
tuu2

x

)
+
(
τ
∂

∂t
+ ξ ∂

∂x
+ η ∂

∂u
+ ζt

∂

∂ut
+ ζx

∂

∂ux

)
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×
(

1

2
u2

t −
1

2
u2

x

)
+
(

1

2
u2

t −
1

2
u2

x

)
(τt + utτu + ξx + uxξu)

= Dt B
1
1 + Dx B2

1, (2.6)

whereY1 = τ ∂
∂t + ξ ∂

∂x + η ∂
∂u . The procedure to determineτ andξ (and, hence,

Y1) is standard and straightforward (e.g., see Olver, 1986); we obtainY1 = − 1
4u2 ∂

∂u
with a choice ofB1

1 = B2
1 = 0. Thus,Y = ∂

∂t + ε(− 1
4u2 ∂

∂u ) is another approximate
Noether symmetry corresponding toL = L0+ εL1.

From (1.9), we get (T1
0 , T2

0 ) = (−( 1
2u2

t + 1
2u2

x), utux), which is well known
and

T1
1 = −

1

4
u2ut − 1

2
tuu2

t −
1

2
tuu2

x,

T2
1 =

1

4
u2ux + tuutux,

so that(
Dt
[
T1

0 + εT1
1

]+ Dx
[
T2

0 + εT2
1

])∣∣
(2.1)

= −ut

[
utt − uxx + ε

(
uut + 1

2
tu2

t −
1

2
tu2

x

)]
+ ε

(
1

4
u2+ tuut

)
×
[
ε

(
uut + 1

2
tu2

t −
1

2
tu2

x

)]
≡ 0.

2.1.2. Similarly, as the generatorZ0 = t ∂/∂t + x ∂/∂x is also Noether point
symmetry generator ofL0, we attempt to construct an approximate Noether point
symmetryZ = Z0+ εZ1 corresponding toL. This procedure yieldsZ1 = a(t, x)
∂/∂t + b(t, x) ∂/∂x + (− 1

4tu2+ c(t, x)) ∂/∂u, whereax = bt , at = bx, andctt −
cxx = 0 with B1

1 = − 1
12u3 andB2

1 = 0. As an exampleZ1 = − 1
4tu2. Here,

T1
0 = −

1

2
t
(
u2

t + u2
x

)− xutux,

T2
0 =

1

2
x
(
u2

t + u2
x

)+ tutux,

T1
1 = −

1

4
tu2ut − 1

2
t2uu2

t −
1

2
t2uu2

x − t xuuxut + 1

12
u3,

T2
1 =

1

4
tu2ux + 1

2
t xuu2

t +
1

2
t xuu2

x + t2uuxut ,
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so that (
Dt
[
T1

0 + εT1
1

]+ Dx
[
T2

0 + εT2
1

])∣∣
(2.1)

= −(tut + xux)

[
utt − uxx + ε

(
uut + 1

2
tu2

t −
1

2
tu2

x

)]
+ ε

(
1

4
tu2+ t xuux + t2uut

)[
ε

(
uut + 1

2
tu2

t −
1

2
tu2

x

)]
≡ 0.

2.1.3. The symmetry∂/∂x of L0 yields, with L1 as above, an approximate
parta(t, x) ∂/∂t + b(t, x) ∂/∂x + c(t, x) ∂/∂u, whereax = bt , at = bx andctt −
cxx = 0.
2.2. Another perturbation of the wave equation considered by Karaet al.
(1999) is

utt − uxx + εut = 0. (2.7)

An approximate conserved vector associated with the approximate Lie point sym-
metry generatorX = X0+ εX1 = ∂/∂t + ε(− 1

2u ∂/∂u was shown to be (T1
0 +

εT1
1 , T2

0 + εT2
1 ), where

T1
0 =

1

2
u2

t +
1

2
u2

x,

T2
0 = −utux,

T1
1 =

1

2

(
tu2

t + tu2
x + uut − uux

)
,

T2
1 = −tutux + 1

2
uut − 1

2
uux. (2.8)

The Lagrangian corresponding to the unperturbed equation,X0 and (T1
0 , T2

0 ) is
L0 = 1

2(u2
x − u2

t ) (this has been considered in 2.1 earlier). Proceeding as above,
(1.10) yields L1 = 1

2t(u2
x − u2

t ) so that an approximate Lagrangian isL =
1
2(u2

x − u2
t )(1+ εt) (with B1

1 = 1
2uux and B2

1 = − 1
2uut ). It is again interesting

to note that this an approximation of the exact LagrangianL∗ = 1
2eεt (u2

x − u2
t ).

Once again, the remark regarding (approximate) Noether symmetries and invari-
ants made in 2.1 is appropriate here.

We can, as in 2.1.1–2.1.3, determine the possible existence of other Noether
symmetries and conserved vectors corresponding toL. We obtainX = ∂/∂x +
ε(a(t, x) ∂/∂t + b(t, x) ∂/∂x + c(t, x) ∂/∂u), whereat = bx, ax = bt , andc sat-
isfies the wave equation. Also, the dilation symmetryt ∂/∂t + x ∂/∂x gives rise
to the approximate parta(t, x) ∂/∂t + b(t, x) ∂/∂x + (− 1

2tu+ c(t, x)) ∂/∂u with
the approximate gauge term satisfyingB1

1 = − 1
4u2 andB2

1 = 0. The corresponding
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conserved vector has the form given by

T1
0 = −

1

2
t
(
u2

t + u2
x

)− xutux,

T2
0 =

1

2
x
(
u2

t + u2
x

)+ tutux,

T1
1 = −

1

2
tuut − 1

2
t2u2

t −
1

2
t2u2

x − t xutux + 1

4
u2,

T2
1 =

1

2
tuux + 1

2
t xu2

t +
1

2
t xu2

x + t2utux

so that(
Dt
[
T1

0 + εT1
1

]+ Dx
[
T2

0 + εT2
1

])∣∣
(2.7)

= −(tut + xux)[utt − uxx + εut ] + ε
(

1

2
tu+ t xux + t2ut

)
(utt − uxx)

≡ 0.

2.3.We now summarize equivalent results obtained for the simplest perturbation
of the wave equation independent of derivative terms, viz.,

utt − uxx − εu = 0. (2.9)

Corresponding to the approximate symmetryX = ∂/∂t + ε(a(t, x) ∂/∂t + b(x, t)
∂/∂x + c(t, x) ∂/∂u, whereat = bx, ax = bt , andc satisfies the wave equation,
we obtain the approximate LagrangianL = 1

2u2
t − 1

2u2
x + 1

2εu
2 with conserved

vector components

T1
0 = −

1

2

(
u2

t + u2
x

)
,

T2
0 = utux,

T1
1 = −

1

2
au2

t −
1

2
au2

x − butux + 1

2
u2,

T2
1 =

1

2
bu2

t +
1

2
bu2

x + autux.

Here, (
Dt
[
T1

0 + εT1
1

]+ Dx
[
T2

0 + εT2
1

])∣∣
(2.9)

= ut [utt − uxx + εu] + ε(bux + aut )(utt − uxx)

≡ 0.
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With ∂/∂t replaced by∂/∂x, we obtain

T1
0 =

1

2

(
u2

t + u2
x

)
,

T2
0 = −utux,

T1
1 = −

1

2
au2

t −
1

2
au2

x − butux,

T2
1 =

1

2
bu2

t +
1

2
bu2

x + autux + 1

2
u2

with (
Dt
[
T1

0 + εT1
1

]+ Dx
[
T2

0 + εT2
1

])∣∣
(2.9)

= ux[utt − uxx + εu] + ε(bux + aut )(utt − uxx)

≡ 0.

Note. The exact symmetries invloving∂/∂u andt ∂/∂t + x ∂/∂x do not produce
perturbed conserved vectors on this Lagrangian.

2.4.An interesting example, whose first-order approximate conserved vector as-
sociated withX = X0+ εX1 = ∂/∂t + ε ∂/∂u has been determined in Karaet al.
(1999), is

utt + εut = uxxu
α, α 6= −1,−2, (2.10)

viz.,

T1
0 = −

1

2
u2

t −
1

(α + 1)(α + 2)
uα+2

x ,

T2
0 =

1

(α + 1)
utu

α+1
x ,

T1
1 = 2

α + 2

3α + 4
xuxut + α + 1

3α + 4
uut − uut ,

T2
1 = −

α + 2

3α + 4
xu2

t +
1

α + 1
uuα+1

x − α + 2

(3α + 4)(α + 1)
uuα+1

x − 2

3α + 4
xuα+2

x ,

(2.11)

providedα 6= −4/3. We can construct a LagrangianL0 for the unperturbed equa-
tion using (1.9) as in Ibragimovet al. (1998) usingX0 and the first two equations
of (2.11) to getL0 = 1

2u2
t − 1

(α+1)(α+2)u
α+2
x with zero gaugeB1

0 and B2
0. Then,

we follow the procedure of example 2.1 to determineL1. As this is tedious, we
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summarize the results here. With gauge terms

B1
1 = −

2(α + 2)

3α + 4
ut xux − 2(α + 1)

3α + 4
uut − 1

(α + 1)(α + 2)
tuα+2

+ ut

(
1− 1

2
tut

)
,

B2
1 =

α + 2

3α + 4
xu2

t −
2

3α + 4
uuα+1

x + 2

3α + 4
xuα+2

x − 1

α + 1
uα+1

x

+ 1

α + 1
tutu

α+1
x ,

we get L1 = 1
2tu2

t − 1
(α+1)(α+2)tu

α+2
x so that an approximate Lagrangian of

(2.10) is

L = 1

2
u2

t −
1

(α + 1)(α + 2)
uα+2

x + ε
(

1

2
tu2

t −
1

(α + 1)(α + 2)
tuα+2

x

)
.

Note that L is a first approximation of an exact LagrangianL∗ = eεt ( 1
2u2

t −
1

(α+1)(α+2)u
α+2
x ).
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