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Variational Formulation of Approximate
Symmetries and Conservation Laws
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We show how the conserved vectors and associated (approximate) Lie symmetry gener-
ators of a partial differential equation with a small parameter can be utilized to construct
approximate Lagrangians for the equation. We then use the Lagrangian to further deter-
mine approximate Noether symmetries and, hence, new associated conservation laws.
The theory is applied to a number of perturbations of the wave equation.

1. INTRODUCTION

It has been shown by Feroze and Kara (in press) that the procedure to construct
Lagrangians for differential equations, using approximate symmetries and asso-
ciated conservation laws along with Noether’s theorem (see Noether, 1918), can
be extended to ordinary differential equations with a small parameter (sometimes
referred to as perturbed equations). Consequently, the symmetry and conserved
guantity (first integral) used is a Noether approximate symmetry and first inte-
gral in the sense that the symmetry leaves invariant the functional that arises
in the variational problem and the associated first integral satisfies Noether's
theorem.

In the sequel, we extend the procedure to perturbed partial differential equa-
tions (p.d.e.). Thatis, approximate Lie symmetry generators and conserved vectors
ofap.d.e. are used to determine Lagrangians for the equation (if these exist). As the
Lagrangian is an approximate one, we maintain the order of the small parameter
as it appears in the p.d.e.— in the examples here, the equations are first order in
the small parameter.
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We now review some pertinent results. In Bailahal. (1996), itis shown that
if Xo is a generator of Lie—&klund symmetry of a partial differential equation

EF=0 B=1,...,m, (1.1)

then anapproximate Lie-Bcklund symmetryX = Xp + € X3, of the perturbed
partial differential equation

Ef +€Ef =0 (1.2)
is obtained by solving foX; in
X1(E§)|gs_o +H =0, (1.3)
where

H= 1x0(Eg +€Ef)

€

|Eg+e Ef=0 (1.4)

Ef is the perturbation an#ll is referred to as an auxilliary function. Further, an
approximate conserved vectdr= (T, T?) of (1.2) satisfies

DiT'|a2) = O(?) (1.5)
where
T =Ty +€T), i=12 (1.6)
Equation (1.5) is an approximate conservation law for (1.2). Furthermore, the
componentd' = Tj + €T, of the approximate conserved vectdt,satisfies
XoTg + Dj(59) T — T4 Di (&) = O,
Xo(T}) + Dj (50) Td — T/ Dj (&) = —(Xa(To) + Dj (1) T — To Dj (&1)).
i=1,2 (1.7)
For the Lagrangian formulation, more specifically for the inverse problem, we
appeal to Noether’s theorem. However, we first need to state the following theorem
regarding the invariance of the functional in the variational problem. The proof

is straightforward and proceeds in a way similar to the well known unperturbed
case.

Theorem 1. Suppose [, X, u, U, Uy, €) = Lo(t, X, U, Ut, Uy) + €La(t, X, U,

Ui, Uy) is a first-order Lagrangian corresponding to a second-order perturbed
partial differential equation (1.2). If the functiongl}, L dt dx is invariant under
the one-parameter group of transformations with approximate LiekBind sym-
metry generator X= Xq + € X1, where % = £} /0t + £29/9X + nod/du and
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X1=£19/dt +£29/0x + n1d/duuptogauge B= B} + €Bl, B' € o7, i = 1,2
then

XoLo+ LoD (5) = Dj(B;),
XiLo+ XoL1+ LoDj& + L1Dj&) = DB, (1.8)
where D is the total differential operator with respect t, x.e.,

0

« 2 L =12
" 8u‘j’+

Dj + u? +u

=ox e

In this notation, Noether’s theorem reads
Theorem 2. Corresponding to each symmetry=X¢' 8/9x' + % d/9u® that

satisfies the conditions of Theorem 1, there exists an approximate conserved vector
T = (T3, T?) given by

T =B + L& + (i - s"u?);ub + 0(?) (1.9)

such that Eq. (1.5) is satisfied.
Note With T! = T} +€Ti,i = 1, 2, if we separate by powers@fordere yields

oL
TE = B+ Lokt + Lagd + (m — wiéi — un) 5°
i
alq
+ (o — Utk — UxES) Em
2 2 2 2 1 2y 9Lo
T7 = —Bf + Lo&f + L1&5 + (1 — Ue&i — Uxép) FI
X
aL
+ (no — W&y — UxER) a_l (1.10)
Ux

2. APPLICATIONS

2.1.We consider the following perturbation of the 1-1 wave equation considered
by Karaet al. (1999),

1 1
Utt — Uxy + e(uut + Etut2 — 5tu§> =0. (2.1)

An approximate Lie point symmetrX = Xo+ € X3 = 3/0u + e(—%tu a/0u).
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X is associated with the conserved vector
(TLT?) = (Tg +eTHL TE+€TH)

1 1 1
= (ut +e[£—1u2+ Etuut}, —ux+e[—§tuuxD. (2.2)

A Lagrangian corresponding tXo and (Tg, T@) is Lo = 3u? — u? (see
Ibragimov, 1994). We use (1.10) to construgt i.e., we get the system
L, 1, T
— =-u"+tu By,
au 4 + Ut + By AUy

From the first equation in (2.3), we get

= —tuuy + BZ. (2.3)

1 1

L, = Zuzut + Etuut2 +/ Bl du + A(t, X, U, Ux)

and with a choice 0B} = —3u?, L; = ituu? + A. From the second equatlon in
(2.3) andB? = 0, it can be shown that — Stuu? so thatly = Stuu? — Jtuu?
so that an approximate Lagrangian for Eq (2. 1) is

1 1 1 1
L = Eutz - Eui + e(ztuut2 - Etuui)

1u__£J 14 etu 2.4
= (30 3u)a+ew, 2.9

In fact, L is equivalent to thexactLagrangianL* = 3 e"(u? — u2). The Euler—
Lagrange operator oh is

Ugt — Uyy + e(uut + %tut2 — %tui) + etu(Uy — Uxy). (2.5)
Remark. As the third termin (2.5)is of ordef, L is an approximate Lagrangian
of (2.1) with approximate Noether symmetdy(asL is constructed from an ap-
proximate version of Noether’s theorem), i.¥. approximately yields the corre-
sponding variational functional invariant. Also, the vector, (T>) is an approxi-
mate Noether conserved vector.

We now study the possible existence of other approximate Noether
symmetries and conserved vectors corresponding tasing (1.8) and (1.9),
respectively.

2.1.1 Firstly, asYp = 9/0t is also a Noether symmetry associated viighwe use
the second equation in (1.8) to determiigL; as obtained earlier), i.e.,

81tuu ltuu+a§+8+a+a
agt\2t 72 ot "au T 50 T %50,
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1 1 1 1
X <§uf - Eu§> + <§uf - §U§>(Tt + UrTu + §x + Uxéu)
= DB} + D,B?, (2.6)

whereY; =1 % +& j’—x + 7 j—u The procedure to determineandé (and, hence,
Y1) is standard and straightforward (e.g., see Olver, 1986); we ofitain—zu? -2
with achoice oB! = B? = 0. ThusY = 2 + ¢(—3u?)is another approximate
Noether symmetry correspondinglto= L + €L;.

From (1.9), we getTg, T) = (—(3uZ + Ju2), u;uy), which is well known
and

1 1 1
T = —Zu?u; — Stud? — Ztud?,
1= Tt St = St
2 1 2
T = Zu Uy + tUU Uy,

so that

(Di[To +€T] + Dx[Tg + 6le])|(2.1)
= —U|ug —u u 1tu2 1tu2 1u2 tuu
= —Ut[ Ut — Uxx + € Ut+§ t ~ 5tUx +€£_1 + tuu

1o 15
X |€ Uut+§tut_§tux

0.

2.1.2. Similarly, as the generatafy =t 3/dt + X 3/9x is also Noether point
symmetry generator df,, we attempt to construct an approximate Noether point
symmetryZ = Zy + € Z; corresponding td.. This procedure yieldZ; = a(t, x)

3/0t + b(t, x) 9/9x + (—5tu? + c(t, x)) 3/du, wherea, = by, a = by, andcy —

Cxx = O with B} = —5u® andB? = 0. As an exampl&; = —3tu?. Here,

1
T4 = —Et(ut2 + UZ) — XUgUy,

1
T¢ = 5x(ut2 + UZ) + tueuy,

1 1 1 1
T = —Ztudu — Zt?ul? — Zt?uld — txuuuy + —Uu®,
1= Tt it T ptut et 75

1 1 1
T? = ZtuzuX + Etxuu[2 + étxuui + t2uuu,
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so that

(Di[To + €T ] + Dx[Tg +€T7]) |(2.1)

1 2 1 2

= —(tut + XUx) [ Ut — Uxx + €| Ul + Etut - Etux
L 2 12 1 5
+ € U+ txut + u ) | e uu + Stuf — Stug

=0.

2.1.3. The symmetrya/ox of Lo yields, with L; as above, an approximate
parta(t, x) 8/at + b(t, x) 8/9x + c(t, x) 3/du, wherea, = by, &, = by andcy —
C)()( = O.

2.2. Another perturbation of the wave equation considered by Ketral.
(1999) is

Uit — Uyxx + €ty = 0. (27)

An approximate conserved vector associated with the approximate Lie point sym-
metry generatoiX = Xg + € X; = 9/0t + e(—%u d/du was shown to be‘l()l +
€Tl T + €T?2), where

1 1
Ty = Su?+ -u2,

2 2
TE = —UUy,
11,5 2
T = E(tut + tuZ + Utk — Uly),
1 1
T2 = —tuguy + SUl — Uy (2.8)

The Lagrangian corresponding to the unperturbed equaXgrand (Tg, T2) is
Lo = %(ui — u?) (this has been considered in 2.1 earlier). Proceeding as above,
(1.10) yieldsL; = %t(ui —u?) so that an approximate Lagrangian lis=
2(u2 — u?)(1+ et) (with B} = uuy and BZ = —Zuuw,). It is again interesting
to note that this an approximation of the exact Lagrandianr= %e“(uﬁ — u?).
Once again, the remark regarding (approximate) Noether symmetries and invari-
ants made in 2.1 is appropriate here.
We can, as in 2.1.1-2.1.3, determine the possible existence of other Noether
symmetries and conserved vectors corresponding. td/e obtainX = 3/9x +
e(a(t, x)a/at + b(t, x) 3/9x + c(t, x) 3/du), wherea; = by, ax = by, andc sat-
isfies the wave equation. Also, the dilation symmetéyot + x 3/9x gives rise
to the approximate pas(t, X) /9t + b(t, x) 9/9x + (—%tu + c(t, x)) 3/9u with
the approximate gauge term satisfyBfj= —zu?andB? = 0. The corresponding
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conserved vector has the form given by
1 _ _} 2 2\ _
Ty = 2t(ut + U7) — XUtUy,

1
T2 = Ex(ut2 + UZ) + tuguy,

1 1 1 1
T = —Ztuu — =t2u? — Zt2u2 — txuuy + U2,
1 2 2 Tt X it g
1 1 1
T2 = Ztuuy + StXu? + Stxu + t2upuy

2 2 2

so that
(Dx [Tol + ETll] + DX[TOZ + lez]) |(2.7)
1
= —(tu; + XUuy)[Ugt — Uxx + €U¢] + G(Etu + tXuy + tzut)(un — Uxx)

0.

2.3.We now summarize equivalent results obtained for the simplest perturbation
of the wave equation independent of derivative terms, viz.,

Utt — Uyx — €u = 0. (2.9)

Corresponding to the approximate symmextry= d/0t + e(a(t, x) 3/at + b(x, t)
d/9x + c(t, x) 9/9u, wherea; = by, ax = by, andc satisfies the wave equation,
we obtain the approximate Lagrangian= 1u? — 1uZ + Zeu? with conserved
vector components

1
Ty = —E(ut2 + U3),

T02 = UtuX,
1 1 1
T = —zaut2 — Eaui — buuy + Euz,

1 1
TZ = Zbu? + Zbu2 + auuy.
2 2
Here,
(De[Tg + €T{] + D[Tg +€TF)) |(2.9)
= Ut[Urt — Uxx + €u] + e(bux + aug) (Ut — Uxx)

=0.



1508 Johnpillai and Kara

With 9/t replaced by /9%, we obtain

1
T8 = (R ),

2
Ty = —UUy,

1 1
Tl = _Eaut2 - éaui — buguy,

1 1 1
T2 = Ebut2 + Ebui + aluy + Euz
with
(Di[To +€T{] + Dx[T§ + 6le])|(2.9)
= Ux[Urt — Uxx + €u] + e(bux + au) (Ui — Uxx)
=0.

Note The exact symmetries invlovirdydu andt d/dt + x d/dx do not produce
perturbed conserved vectors on this Lagrangian.

2.4. An interesting example, whose first-order approximate conserved vector as-
sociated withX = X 4+ € X3 = 9/9t + € 9/9u has been determined in Kaggal.
(1999), is

Utt + eut = UXXua, o ;é _1, _2, (2.10)
viz.,
1 1
Ti - 42— —ua+2,
0 27 @+ De@+2) ¥
1
¢ = THT
T @+
o+ 2 oa+1
T =2— = XUl + ——— Ul — UL,
1 3+ 4 xt+3a+4 t Ut
o+ 2 o+ 2 2
T2=_ XU2 u +l_—uua+l_ Xua+2’
P T T oY T e T a
(2.11)

provideda # —4/3. We can construct a Lagrangiag for the unperturbed equa-
tion using (1.9) as in Ibragimost al. (1998) usingXy and the first two equations
of (2.11) to getlo = JuZ — mu‘;” with zero gaugeB} and BZ. Then,

we follow the procedure of example 2.1 to determine As this is tedious, we
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summarize the results here. With gauge terms

1 2+2) 2(c+1) a+2
Bl = ———UXU — — Ul — ———
30+4 3+4 @+ +2)
1
+ Ut (1— Etl.h),
a+2 2 1
BZ — XU2 _ uua+1 Xua+2 _ _uoH—l
1= e r M T e at Tz g a4+1*
tuuett,
+ at+1 X
we get Ly = 1tu? — Wl(aﬂ)tu‘;” so that an approximate Lagrangian of

(2.10)is
1 1
L=_2_—(x+2 _t2_—ta+2.
2 T @ rDa+r2) ™ +€(2 W et D12 X )

Note that L is a first approximation of an exact Lagrangiar = e“(%utz—
1 ua+2)
(e+1)(@+2) 7X '

ACKNOWLEDGMENT
This work is supported by a grant from the N.R.F. of South Africa.

REFERENCES

Baikov, V. A., Gazizov, R. K., and Ibragimov, N. H. (199€)RC Handbook of Lie Group Analysis of
Differential EquationsVol. 3, N. H. Ibragimov, ed., CRC Press, Boca Raton, Florida.

Feroze, T. and Kara, A. H. Group theoretic methods for approximate invariants and Lagrangians for
some classes of weakly non-linear systems. To appebnténnational Journal of Non-Linear
Mechanics

Ibragimov, N. H. (1994)CRC Handbook of Lie Group Analysis of Differential Equatioval. 1,
N. H. Ibragimov, ed., CRC Press, Boca Raton, Florida.

Ibragimov, N. H., Kara, A. H., and Mahomed F. M. (199Bpnlinear Dynamic4d5(2), 115.

Kara, A. H., Mahomed, F. M., antinal, G. (1999).International Journal of Theoretical Physics
38(9), 2389.

Noether, E. (1918)Nachr. Konig. Gesell. Wissen., @&ingen, Math.-Phys. KiHeft 2, 235. English
translation inTransport Theory and Statistical Physib@), 186 (1971).

Olver, P. (1986)Application of Lie Groups to Differential EquationSpringer-Verlag, New York.



